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ABSTRACT
In this article, we consider a new class of bimodal symmetric distributions and
study some of its important statistical properties. The estimation of parameter is
attempted and illustrated with the help of certain real life data sets. A simulation
study is carried out to examine the performance of the estimator of parameter of
the distribution.
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1. Introduction

Bimodal distributions can arise in a wide variety of fields and has applications across
different domains. Some important scenarios where bimodality arises include the size
of worker ants in weaver colonies (Weber (1946)), the duration of volcanic eruptions
(Azzalini and Bowman (1990)), amount of urine mercury in micromercurialism (Ely et
al. (1999)), grain size distribution of sintered zirconia (Dierickx et al. (2000)), amount
of tropospheric water vapour in tropics (Zhang et al. (2003)), gene expression pattern
in breast cancer (Wang et al. (2009) and Ertel (2010)).

There is extensive research on modeling bimodality. Eisenberger(1964) investigated
the conditions for which the density function of a mixture of two normal distributions.
Behboodian (1970) shown that a mixture of two normal distributions is either uni-
modal or bimodal. Chosh (1978) provided a characterization of a bimodal probability
distribution, contributing to the understanding of such models. Many authors have
proposed different versions of the bimodal normal distribution to replace mixture dis-
tributions like Rao et al. (1988) and Sarma et al.(1990). These distributions did not
materialize in the real world of statistics because of its functional form complexities.
These models suffers serious estimation problems either from classical or Bayesian
approaches as studied by McLachlan and Peel (2000). Two-component mixture distri-
butions are often used as a powerful tool for modeling bimodal data. A major issue with
these distributions is that it is necessary to deal with problem of non-identifiability of
their parameters, see McLachlan et al. (2019) for more details.
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Through this article we introduce a new class of bimodal distributions in an infinite
domain which is symmetric in nature. The proposed distribution is named as ”bimodal
symmetric distribution (BSD)”. We study some important statistical properties of the
BSD. The paper is organized as follows: In Section 2, we present the definition of
the model followed by some important results and derived its cumulative distribution
function, moments, generating functions, quantiles, entropy and reliability measures.
The estimation of parameter of the model is discussed in Section 3. The estimation
procedure is illustrated using some real life data sets in Section 4 to highlight the
usefulness of the model. A brief simulation study is conducted in Section 5 to analyse
the performance of the maximum likelihood estimator of parameter of the distribution
followed by conclusion in Section 6.

2. Definition and Properties

In this section, we present the definition and some important properties of bimodal
symmetric distribution.

Definition 2.1. A continuous random variable X is said to follow bimodal symmetric
distribution (BSD) if its p.d.f is of the form

f(x;β) = βe−β|x|
(

1− e−β|x|
)

;−∞ < x <∞ (1)

for β > 0.

Here β is the scale parameter. A distribution with p.d.f (1) hereafter is denoted as
BSD(β).
When β=1, the p.d.f (1) of BSD(β) reduces to

f1 (x) = e−|x|
(

1− e−|x|
)

;−∞ < x <∞. (2)

Proposition 2.2. A BSD(β) has two modes.

Proof. On differentiating (1) with respect to x, we have

d

dx
f (x;β) = f ′ (x;β) =

{
β2eβx(1− 2eβx) ;x < 0
β2e−βx(2e−βx − 1);x ≥ 0

(3)

On equating equation (3) to 0, the zero of the first expression happens at x0 = 1
β log

(
1
2

)
and that of the second expression at x0 = 1

β log (2). Therefore, we can say that the
BSLD is bimodal in nature irrespective of the values of parameter β.

The probability plots of the BSD(β) are presented in the Figure 1 for particular
values of β. The bimodal nature of BSD can be clearly observed from Figure 1.

Proposition 2.3. If X has BSD(β), then Z=-X also has BSD(β).
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Figure 1. Illustrations of BSD(β) for various choices of β.

Proof. For any z∈ R and β > 0, the p.d.f of random variable Z is as follows

f1 (z) = f (−z, β)

∣∣∣∣dxdz
∣∣∣∣

= f (z, β) .

Proposition 2.4. If X has BSD(β), then Z=|X| follows generalized exponential dis-
tribution (GE(2,β)) of Gupta and Kundu (2001) with p.d.f given by

f2 (z) = 2βe−βz
(

1− e−βz
)

; z > 0. (4)

Proof. For z > 0, the p.d.f of Z=|X| is as follows

f2 (z) = f (−z;β)

∣∣∣∣dxdz
∣∣∣∣+ f (z;β)

∣∣∣∣dxdz
∣∣∣∣

= f (z;β) + f (z;β)

which leads to equation(13).

Proposition 2.5. If X has BSD(β), then p.d.f of Z=X2 is the following

f3 (z) =
β√
z
e−β
√
z
(

1− e−β
√
z
)

; z > 0. (5)
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Proof. For z > 0, the p.d.f of Z=X2 can be obtained as

f3 (z) = f
(
−
√
z;β
) ∣∣∣∣dxdz

∣∣∣∣+ f
(√
z;β
) ∣∣∣∣dxdz

∣∣∣∣
= f

(√
z;β
)

+ f
(√
z;β
)

which on simplifying leads to equation(12).

• It is to be noted that sum and difference of bimodal symmetric random variables
have the same distribution.

Proposition 2.6. The cumulative distribution function (c.d.f) of BSD(β) is given by

F (x;β) =

 eβx
(

1− eβx

2

)
;x < 0

1− e−βx
(

1− e−βx

2

)
;x ≥ 0.

(6)

Proof. For x > 0, the c.d.f is

F (x) =

x∫
−∞

βeβx
(

1− eβx
)
dx

= β

[
eβx

β
− e2βx

2β

]x
−∞

=
eβx

2

[
2− eβx

]
and the c.d.f for x ≥ 0 is

F (x) =

0∫
−∞

βeβx
(

1− eβx
)
dx+

x∫
0

βe−βx
(

1− e−βx
)
dx

= β

[
eβx

β
− e2βx

2β

]0
−∞

+ β

[
e−βx

−β
− e2βx

−2β

]x
0

=

[
1− 1

2

]
+

[
1

2
− e−βx

(
1− e−βx

2

)]
= 1− 1

2
e−βx

(
2− e−βx

)
.

Proposition 2.7. For r ≥ 1, the rth raw moment µ
′

r of the BSD(β) with p.d.f (1) is
the following

µ′r =
r!

βr
(1 + (−1)r)

(
1− 1

2r+1

)
. (7)
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Proof. By definition, the rth raw moment of TPSLD is obtained as

µ′r = E(Xr)

= β

 0∫
−∞

xreβx(1− eβx)dx+

∞∫
0

xre−βx(1− e−βx)dx


= β

(
(−1)rΓ (r + 1)

βr+1
− (−1)rΓ (r + 1)

(2β)r+1 +
Γ (r + 1)

βr+1
− Γ (r + 1)

(2β)r+1

)
=

βΓ (r + 1)

βr+1

[
(−1)r

[
1− 1

2r+1

]
+

[
1− 1

2r+1

]]
=

r!

βr

[
((−1)r + 1)

(
1− 1

2r+1

)]
.

As a consequence of Result 2.7, we have the following remarks.

Remark 1. The mean and variance of BSD(β) are as follows

E(X) = µ′1 = 0 (8)

and

µ2 = V ariance =
7

2β2
. (9)

Remark 2. The BSD(β) is overdispersed for any β > 0.

Remark 3. The measure of skewness and kurtosis of the BSD(β) are given by

β1 = 0 (10)

and

β2 = 3.79. (11)

It should be noted that BSD is always symmetric and leptokurtic in nature.

Proposition 2.8. For any t ∈ R and i =
√
−1, the characteristic function of the

BSD(β) is given by

ΦX (t) =
4β4 − 2β2t2

(it+ β) (it+ 2β) (it− β) (it− 2β)
. (12)

Proof. By definition, characteristic function of BSD is

ΦX (t) = E
(
eitX

)
= β

 0∫
−∞

eitx
(
eβx − e2βx

)
dx+

∞∫
0

eitx
(
e−βx − e−2βx

)
dx

 (13)
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On integrating (13), w get

ΦX (t) = β

(
1

(it+ β)
− 1

(it+ 2β)
− 1

(it− β)
+

1

(it− 2β)

)
= 2β2

(
2β2 − t2

(it+ β) (it+ 2β) (it− β) (it− 2β)

)
which leads to (12).

The quantile function is a powerful tool that allows you to find the value of a
random variable corresponding to a given probability, and it is commonly used in
statistical analysis, simulations, and risk assessments. It is the inverse of the cumulative
distribution function (CDF). It plays a significant role in statistical analysis, as it
allows analysts to interpret data and distributions in terms of specific percentiles or
probabilities. The quantile function of BSD is obtained as follows.

Proposition 2.9. The Quantile function of BSD(β) is given by

Q(t) = Xt =


1
β log

(
1−

√
(1− 2t)

)
; 0 < t ≤ 1

2

1
β log

(
1−

√
(2t− 1)

)
; 1
2 ≤ t < 1.

(14)

Proof. For 0 < t ≤ 1
2 , the quantile function of BSD is

F (Xt) = t

eβxt
(

1− eβxt

2

)
= t

⇒ 2eβxt − e2βxt = 2t

⇒ (1− eβxt)2 = 1− 2t

⇒ eβxt = 1−
√

(1− 2t)

⇒ xt =
1

β
log
(

1−
√

(1− 2t)
)

and the quantile function of BSD for 1
2 ≤ t < 1 is

1− e−βxt
(

1− e−βxt

2

)
= t

⇒ 2e−βxt − e−2βxt = 2(1− t)
⇒ (1− e−βxt)2 = 2t− 1

⇒ e−βxt = 1−
√

(2t− 1)

⇒ xt =
1

β
log
(

1−
√

(2t− 1)
)
.

Rényi entropy is a generalization of the Shannon entropy, a fundamental concept in
information theory. While Shannon entropy measures the uncertainty or randomness
of a probability distribution, Rényi entropy introduces a parameter γ that allows for
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the tuning of sensitivity to different probabilities. This gives it a broader range of
applications in various fields, including information theory, cryptography, machine
learning, and statistical analysis.

Proposition 2.10. The Rényi entropy of the BSD(β) is given by

IR (γ) =
1

γ − 1
log
(
2βγ−1B1 (γ, γ + 1)

)
(15)

where γ > 0, γ 6= 1 and Br (a, b) =
r∫
0

ta−1 (1− t)b−1 dt is the incomplete beta function.

Proof. By definition, Rényi entropy of a distribution with p.d.f (.) is

IR (γ) =
1

γ − 1
log

∫ ∞
−∞

gγ(x)dx

where γ > 0 and γ 6= 1. Thus, the Rényi entropy of BSD with p.d.f (1) is

IR (γ) =
1

γ − 1
log

∫ ∞
−∞

fγ(x)dx (16)

in which

∞∫
−∞

fγ (x) dx =

0∫
−∞

fγ (x) dx+

∞∫
0

fγ (x) dx

= β
γ

 0∫
−∞

eγβx
(

1− eβx
)γ
dx+

∞∫
0

e−γβx
(

1− e−βx
)γ
dx

 (17)

Put eβx = v and e−βx = u in equation (17) to get

∞∫
−∞

fγ (x) dx = β
γ

 1∫
0

vγ (1− v)γ

βv
dv +

1∫
0

uγ (1− u)γ

βu
du


= β

γ

(
1

β
+

1

β

)
B1 (γ, γ + 1) (18)

Substituting (18) in equation (16) leads to Result 2.10.

Reliability measures are important tools used in various fields like engineering, man-
ufacturing, healthcare etc. to assess the performance, longevity, and dependability of
systems or components over time. These measures help in predicting the likelihood of
failure, estimating the expected lifespan, and optimizing maintenance schedules. Some
key reliability measures like survival function, hazard rate function, reversed hazard
rate function and mean residual life function are presented below.
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Proposition 2.11. The survival function of the BSD(β) is given by

S (x) =

{
1− 1

2e
βx
(
2− eβx

)
;x < 0

1
2e
−βx (2− e−βx) ;x ≥ 0

(19)

The proof immedietly follows from the definition of survival function S(x) = 1−F (x)
and hence omitted.

Proposition 2.12. The hazard rate function (or failure rate function) of the BSD(β)
is as follows

h(x) =

{
2βeβx(1−eβx)
2−βeβx(1−eβx) ;x < 0
2β(1−e−βx)
(2−e−βx) ;x ≥ 0.

(20)

The proof directly follows from the definition of hazard rate function and therefore
omitted. The failure rate function of BSD is graphically represented in Figure 3.
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Figure 2. Failure rate plot of BSD(β) for various choices of β.

Proposition 2.13. The reversed hazard rate function of the BSD(β) is as follows

r(x) =

{
2β(1−eβx)
(2−eβx) ;x < 0

2βe−βx(1−e−βx)
2−e−βx(2−e−βx) ;x ≥ 0.

(21)

The proof immediately follows the definition of reversed hazard rate function

r(x) = f(x)
F (x) and hence omitted.

Proposition 2.14. The mean residual life function (MRLF) of the BSD(β) is given
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by,

m(x) =

{
−3−4βx+4eβx−e2βx
2β(2−2eβx+e2βx) ;x < 0

4−e−βx
2β(2−e−βx) ;x ≥ 0.

(22)

Proof. By defintion, the mean residual life function (MRLF) is given by

m(x) = E[X − x|X > x].

For x < 0, the MRLF of BSD with p.d.f (1) is

m(x) =
1

1− F (x)

0∫
x

(1− F (t))dt

=
1

1− eβx
(
1− eβx

2

) 0∫
x

1− eβt
(

1− eβt

2

)
dt

=
1

2− 2eβx + e2βx

0∫
x

(2− 2eβt + e2βt)dt

=
−3− 4βx+ 4eβx − e2βx

2β(2− 2eβx + e2βx)

and for x ≥ 0, the MRLF of BSD is

m(x) =
1

1− F (x)

∞∫
x

(1− F (t))dt

=
1

e−βx
(
1− e−βx

2

) ∞∫
x

e−βt
(

1− e−βt

2

)
dt

=
1

2e−βx + e−2βx

∞∫
x

(2e−βt + e−2βt)dt

=
4− e−βx

2β(2− e−βx)
.

3. Estimation

In this section, we discuss two estimation procedures for estimating the parameter of
bimodal symmetric distribution - the method of moment estimation and the method
of maximum likelihood estimation.

149



Asian Journal of Statistical Sciences C. Satheesh Kumara and Arathi S.b

3.1. Method of Moments

The method of moments is relatively a simple procedure to estimate the unknown
parameters of probability distributions. The moment estimator of the parameter β
of BSD can be obtained by equating the second theoretical moment with the corre-
sponding sample moment. The moment estimator of the parameter β of BSD is given
by

1

n

n∑
i=1

X2
i =

7

2β2

⇒ β̂MM =

√√√√√ 7n

2
n∑
i=1

X2
i

(23)

since β > 0.

3.2. Maximum Likelihood Estimation

In this section, we consider the estimation of the parameter β of BSD using the max-
imum likelihood estimation procedure.

Let X1, X2, X3, ..., Xn be a random sample of size n from BSD with pdf (1) . Let
X(1) < X(2) < ... < X(n) denote the corresponding ordered sample. Then, the log-
likelihood function l(β) of the sample is given by

l (β) = n log β + β
∑
I1

Xi + log

(
1− e

β
∑
I1

Xi
)
− β

∑
I2

Xi + log

(
1− e

−β
∑
I2

Xi
)

(24)

where
∑
Ii

denotes the summation over the set Ii such that I1 = {i : Yi < 0, for i =

1, 2, ..., s} and I2 = {i : Yi ≥ 0, for i = s+ 1, ..., n}.
Assume that β̂ be the maximum likelihood estimator of the parameter β of BSD.

On differentiating the log-likelihood function given in equation (24) with respect to
the parameter β and equating to zero, we obtain the following likelihood equation.

∂l (β)

∂β
= 0

or equivalently,

∑
I1

Xi −

∑
I1

Xie
β
∑
I1

Xi

(
1− e

β
∑
I1

Xi
) −∑

I2

Xi +

∑
I2

Xie
−β

∑
I2

Xi

(
1− e

−β
∑
I2

Xi
) = 0 (25)
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On solving we get(∑
I1

Xi −
∑
I2

Xi

)(
1− 2e

β
∑
I1

Xi−β
∑
I2

Xi
)
−

(∑
I1

Xie
−β

∑
I2

Xi
−
∑
I2

Xie
β
∑
I1

Xi
)

−2

(∑
I1

Xie
β
∑
I1

Xi
−
∑
I2

Xie
−β

∑
I2

Xi
)

= 0 (26)

On solving the equation (26) we can obtain the maximum likelihood estimator of the
parameter β of BSD.

4. Applications

In this section, we illustrate the usefulness of the proposed model BSD(β) using four
real life data sets. The model is compared with bimodal-symmetric Normal distribu-
tion (BND) of Elal Olivero (2010), bimodal Cauchy distribution (BCD) of Hassan
and Hijazi (2010) and bimodal-symmetric Laplace distribution (BLD) of Harandi and
Alamatsaz (2013). Firstly, we use National Consumer Price Index (INPC) data to
highlight the suitability of the BSD(β). A data set of 13 observations which denotes
percentage change in National Consumer Price Index (INPC) for the wearing apparel
of different areas of Brazil. The data is collected in the period of August 1 to August
29, 2017 (reference period) and is compared with prices charged in the period of June
29 to July 31, 2017 (base period). The data is taken from www.ibge.gov.br. The second
data set is taken from World Population Prospects: 2019 revision which can be viewed
at https://population.un.org/wpp/downloads. The data set is on the average annual
rate of population change (expressed in percentage) of Russian Federation and has
30 observations. The third data set appears in macro-economic framework statement
2018-2019. It has 15 observations representing percentage change of government
finances (expressed in crores) for 2016-2017 in macro-economic framework statement.
The fourth data set is on real annual returns on stocks from Benderly and Zwick
Data available in Benderly and Zwick (1985). It has 28 observations.

Data set 1: 0.53, -0.68, 0.68, 0.73, 0.26, 0.88, 0.14, 0.56, 0.90, -0.25, 0.18,
0.10, -0.54.
Data set 2: -0.060, -0.027, -0.019, -0.054, -0.123, -0.202, -0.258, -0.270, -0.248, -0.219,
-0.216,
-0.251, -0.300, -0.311, -0.248, -0.110, 0.131, 0.209, -0.027, -0.377, -0.247, 0.094, 0.630,
0.698, 0.625, 0.554, 0.568, 1.077, 1.474, 1.599.
Data set 3: 24.8, 33.6, 1.0, -2.7, 14.7, 83.1, -5.3, 12.6, 12.6, 16.4, 5.6, -10.4, 0.8, -5.3,
-17.2.
Data set 4: 53.0, 31.2, 3.7, -13.8, 41.7, 10.5, -1.3, 26.1, -10.5, 21.2, 15.5, 10.2, -
13.3, 21.3, 6.8, -13.5, -0.4, 10.5, 15.4, -22.6, -37.3, 31.2, 19.1, -13.1, -1.3, 8.6, 22.2, -12.2.

We have numericaly illustrated the maximum likelihood estimation procedure using
four real life data sets. We have fitted BSD to all the four data sets and considered the
fitting of the models-BND, BCD and BLD for comparison using MATHEMATICA. We
have computed the P-value and Kolmogorov Smirnov Statistic (KSS) value associated
in all the cases. From Table 1, we can observe that BSD has the maximum P-value and
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Table 1. Estimated values of the parameters for the model: BND(µ, σ), BCD(µ, σ), BLD(µ, σ) and

BSD(β) with respective log-likelihood value, KSS value, P-value, AIC, BIC and AICc values for all four
data sets.

Dataset Estimates of the parameters BND(µ, σ) BCD(µ, σ) BLD(µ, σ) BSD(β)

1
∧
β - - - 2.9915
∧
µ 1.3564 0.1175 -0.3256 -
∧
σ 0.6901 0.3644 0.2272 -
l -17.5756 -72.8693 -14.8704 -10.7507

KSS 0.5338 0.9853 0.4137 0.3027
P-value 0.0005 1.7272x10−12 0.0157 0.1492
AIC 39.1512 149.7390 33.7408 23.5014
BIC 40.2811 150.8680 34.8707 24.0064
AICc 40.3512 150.9390 34.9408 23.8651

2
∧
β - - - 4.1207
∧
µ 1.1502 -0.5024 1.1432 -
∧
σ 0.6585 0.4612 0.3531 -
l -39.3858 -158.0510 -42.8160 -24.0551

KSS 0.4633 0.9845 0.4798 0.2057
P-value 2.0393x10−6 4.7805x10−27 7.1049x10−7 0.1366
AIC 82.7717 320.1020 89.6321 50.1101
BIC 85.5741 322.904 92.4345 51.5113
AICc 83.2161 320.546 90.0765 50.2530

3
∧
β - - - 0.0949
∧
µ 22.0847 13.7735 20.6439 -
∧
σ 14.9099 11.6589 6.7666 -
l -74.5309 -137.5090 -69.9821 -69.9945

KSS 0.3819 0.9844 0.3544 0.2885
P-value 0.0177 3.4481x10−14 0.0343 0.1341
AIC 153.0620 279.0180 143.9640 141.9890
BIC 154.4780 280.4340 145.3800 142.6970
AICc 154.0620 280.0180 144.9640 142.297

4
∧
β - - - 0.08604
∧
µ 60.7130 2.2290 17.1121 -
∧
σ 32.8421 13.5930 5.9074 -
l -143.9350 -243.1570 -132.0980 -127.1360

KSS 0.5047 0.9846 0.2931 0.2086
P-value 3.9451x10−7 2.42578x10−25 0.0126 0.1509
AIC 291.8690 490.3140 268.1960 256.2730
BIC 294.5340 492.9790 270.8610 257.6050
AICc 292.3490 490.7940 268.6760 256.4270

least KSS value. For model comparison, we have used some well known informaton
measures- Akaike’s Information Criterion (AIC), Bayesian Information Criterion (BIC)
and corrected Akaike’s Information Criterion (AICc) and results are presented in Table
1. From Table 1, it can be viewed that BSD has the least AIC, BIC and AICc value as
compared to other models thereby indicating the suitability of BSD in modelling these
data sets. Based on the computed values, it can be viewed that BSD provides best fit
compared to the existing models- BND, BCD and BLD. Hence, it can be viewed as
an alternative to BND, BCD and BLD in several practical situations.

5. Simulation

In this section, we analyse the performance of the maximum likelihood estimator of the
proposed model by conducting a simulation study. Using the software MATHEMAT-
ICA, a finite sample of size (n) is generated using inverse CDF transformation and
the parameter is estimated using maximum likelihood procedure. We have generated
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Table 2. The parameter estimates, their corresponding absolute bias and

MSEs for the simulated samples.
Parameter Sample size Estimates MSE Absolute bias

(n)
β=0.4 20 0.4240 0.0059 0.0240

50 0.4113 0.0018 0.0113
100 0.3979 0.00104 0.0021
200 0.4013 0.0004 0.0013
500 0.4007 0.0001 0.0007

β=1.0 20 1.0239 0.0272 0.0239
50 1.0057 0.0109 0.0057
100 0.9951 0.008093 0.0048
200 1.0030 0.0017 0.0030
500 0.9984 0.0011 0.0016

β=2.0 20 2.0336 0.1458 0.0336
50 1.9871 0.0411 0.0129
100 2.0114 0.0231 0.0114
200 2.0093 0.0136 0.0093
500 2.0076 0.0053 0.0076

60 independent samples of sizes ranging from 20 to 500 from BSD and computed their
mean square errors and absolute bias. The initial values of the parameter β used to
generate data are set to 0.4, 1.0 and 2.0. The Table 2 present the mean value of max-
imum likelihood estimator of β of the BSD along with their respective mean squared
errors (MSE) and absolute bias for 1000 replicates. From Table 2, it can be observed
that as the sample size increases, bias and MSE of the estimator decreases and the
mean value of the estimator approaches to its original value.

6. Conclusion

In this article, we consider a new class of bimodal distributions that are symmetric in
nature and named as ”bimodal symmetric dstribution (BSD)”. It is shown that the
distribution is bimodal, symmetric and leptokurtic in nature. We have investigated
several statistical properties and the parameter is estimated. Four real life data ap-
plications are considered for illustrating the usefulness of the model as compared to
the existing models- bimodal symmetric Normal distribution (BND) of Elal Olivero
(2010), bimodal Cauchy distribution (BCD) of Hassan and Hijazi (2010) and bimodal-
symmetric Laplace distribution (BLD) of Harandi and Alamatsaz (2013). It is shown
that the proposed model gives the best to all the four data sets compared to the rival
modals based on certain information measures such as AIC, BIC and AICc. A brief
simulation study is conducted inorder to assess the performance of the maximum like-
lihood estimator of the parameter of the model. Thus, it may be possible to conclude
that the proposed model is more appropriate for modeling data sets in certain practical
situations compared to the existing models.
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